A Positive Theory of Tax Reform

Ethan Ilzetzki

September 2015

Ethan Ilzetzki A Positive Theory of Tax Reform

・ロト ・回ト ・ヨト ・ヨト

Motivation

• Tax policy of changes through discrete reforms

- No clear notion of reform in most political economy models of tax policy
- Is there something distinct about the politics of tax reform?

• Most tax reforms involve changes in the tax base

- Not only in tax rates
- No sharp distinction between the base and rates in existing political economy models of taxation

• Large focus on vertical redistribution.

- But tax reform often attempts to address **horizontal** inequities and resultant distortions
- E.g. TRA 1986 designed to be vertically neutral

イロト 不得 トイヨト イヨト 二日

What I Do in this Paper

- Tractable model based on Yitzhaki (1979), Wilson (1989), Slemrod-Kopczuk (2002)
 - Monopolistic competition among firms
 - Distributional implications of narrow tax base
 - Endogenous labor supply
 - Aggregate demand externality of narrow tax base

- Tax base and tax rates determined through a political process
 - Lobbying model with fixed entry costs

< ロ > < 同 > < 回 > < 回 > < □ > <

- Tax reform more likely when revenue needs are high
- Tax reform can be Pareto improving at a "reform moment"
- Large reforms easier to implement than marginal ones
- Politically feasible reforms involve **broadening the base** and **lowering** marginal **rates**
- Incentives to lobby for tax reform are strategically complementary ⇒ Multiple equilibria

Citizen preferences, constraint, choice

$$u^{j} = x^{j} - \frac{(h^{j})^{1+\frac{1}{\eta}}}{1+1/\eta}$$
 (Preferences)
$$x^{j} = \left[\int_{i=0}^{1} (x^{j}(i))^{\frac{\varepsilon-1}{\varepsilon}} di\right]^{\frac{\varepsilon}{\varepsilon-1}}$$
 (CES aggregate)
$$\underbrace{\int_{i=0}^{1} p(i) x^{j}(i) di}_{\text{Consumption}} \leq \underbrace{(1-\tau) (wh^{j} + \pi^{j})}_{\text{Net income}} + \underbrace{\tau \int_{i=f}^{1} p(i) x^{j}(i) di}_{\text{Tax Deduction}}$$

 \Rightarrow Demand for variety $x^{j}(i)$, labor supply h^{j} .

同下 イヨト イヨト

Firms

$$\max \pi(i)$$
 s.t.

$$x\left(i\right) = \int_{0}^{1} x^{j}\left(i\right) dj, \qquad \qquad \text{(Demand)}$$

 $x(i) \le zh(i)$ (Technology)

∜

 $p(i) = \mu \frac{w}{z} = p = 1$ (Price) $\pi(i) = \frac{\mu - 1}{\mu} x(i)$ (Markup)

Ethan Ilzetzki

A Positive Theory of Tax Reform

・ロン ・部 と ・ ヨ と ・ ヨ と …

3

CPI and Tax Wedge

$$p^{c}(i) = rac{1}{1 - \tau(i)}; \qquad au(i) = \begin{cases} 0 & i ext{ exempt} \\ au & i ext{ taxed} \end{cases}$$
 (Consumer Price)

$$p^{\mathsf{c}} \equiv \left(\int_{i=0}^{1} \left(p^{\mathsf{c}} \left(i \right) \right)^{1-\varepsilon} \right)^{\frac{1}{1-\varepsilon}} = \frac{1}{1-\hat{\tau}} \tag{CPI}$$

$$1 - \hat{\tau} \equiv \left[f \left(1 - \tau \right)^{\varepsilon - 1} + \left(1 - f \right) \right]^{\frac{1}{\varepsilon - 1}}$$
 (Effective tax rate)

Ethan Ilzetzki A Positive Theory of Tax Reform

< ロ > < 回 > < 注 > < 注 > <

æ

Indirect Utility

$$u^{j} = (z (1 - \hat{\tau}))^{\eta + 1} \left(\frac{1}{1 + \eta} + (\mu - 1) \frac{(1 - \tau (f))^{\varepsilon}}{(1 - \hat{\tau})^{\varepsilon - 1}} \right)$$

Two components:

Utility of "worker"

$$wh^{j} - rac{\left(h^{j}
ight)^{1+rac{1}{\eta}}}{1+\eta} = rac{\left(z\left(1-\hat{\tau}
ight)
ight)^{\eta+1}}{1+\eta}$$

- Same regardless of tax status.
- Decreasing in effective tax rate $\hat{\tau}$.

Indirect Utility

$$u^{j} = (z (1 - \hat{\tau}))^{\eta + 1} \left(\frac{1}{1 + \eta} + (\mu - 1) \frac{(1 - \tau (f))^{\varepsilon}}{(1 - \hat{\tau})^{\varepsilon - 1}} \right)$$

2. Utility of "entrepreneur"

$$\pi^{j} = (\mu - 1) \underbrace{(z (1 - \hat{\tau}))^{\eta + 1}}_{\text{Aggregate Demand}} \underbrace{\frac{(1 - \tau (j))^{\varepsilon}}{(1 - \hat{\tau})^{\varepsilon - 1}}}_{\text{Belative Demand}}$$

Ethan Ilzetzki A Positive Theory of Tax Reform

・ロン ・四 と ・ ヨ と ・ ヨ と ・

æ

Revenues

$$\rho = \underbrace{\tau\left(wh + \pi\right)}_{\text{Pre-deductions}} - \underbrace{\tau \int_{i=f}^{1} p\left(i\right) x\left(i\right) di}_{\text{Deductions}}$$
(Revenues)
$$\log \rho = \underbrace{\log \tau + \eta \log\left(1 - \hat{\tau}\right)}_{\text{Standard}} + \underbrace{\log f}_{\text{Base}} + \underbrace{(\varepsilon - 1) \log\left(\frac{1 - \tau}{1 - \hat{\tau}}\right)}_{\text{Tax efficiency}}$$

Ethan Ilzetzki A Positive Theory of Tax Reform

◆□ > ◆□ > ◆ □ > ◆ □ > ● ● ● ● ●

Feasible Policies For $g \in [10\%, 50\%]$ of GDP

Preferred policy of *j*:

$$\begin{split} \max_{\tau,f} u^{j} & \Longleftrightarrow \max_{\tau,f} \left(z \left(1 - \hat{\tau} \right) \right)^{\eta + 1} \left(\frac{1}{1 + \eta} + \left(\mu - 1 \right) \frac{\left(1 - \tau \left(f, j \right) \right)^{\varepsilon}}{\left(1 - \hat{\tau} \right)^{\varepsilon - 1}} \right) \\ \text{s.t.} \\ \rho \left(\tau, f \right) \geq g. \end{split}$$

<ロ> <部> < 部> < き> < き> < き</p>

Utility with and without a Tax Break

Ethan Ilzetzki A Positive Theory of Tax Reform

Utility with and without a Tax Break

Ethan Ilzetzki A Positive Theory of Tax Reform

Preferred Policy

Proposition 2:

- Optimal base for all citizens f = 1, keeping their *own* tax status fixed.
 - Always prefer broadening the base
 - as long as it doesn't affect own tax status
- \Rightarrow Socially optimal tax base always f = 1.
 - We'll refer to a move from f < 1 to f = 1 as tax reform

Parameter Assumption

イロン 不同 とくほう イロン

Utility with and without a Tax Break

There is a tax base below which tax reform is Pareto improving

Ethan Ilzetzki A Positive Theory of Tax Reform

→ 同 → → ヨ →

- ∢ ⊒ →

Proposition 3:

For any value of g there exists a tax base f = f^R such that all citizens prefer f = 1 to all feasible tax bases f < f^R

• $\Rightarrow f = 1$ is Pareto improving relative to all $f < f^R$

イロン 不同 とくほう イロン

Marginal Reform

If losers must be compensated, marginal reform always costly

Ethan Ilzetzki A Positive Theory of Tax Reform

< 17 ▶

3

Big-Bang Reform

Ethan Ilzetzki A Positive Theory of Tax Reform

э

æ

Private Value of Tax Break

Prop. 4: Private value of tax break decreasing in tax base

Ethan Ilzetzki A Positive Theory of Tax Reform

< 🗇 >

э

< ≣⇒

Increases in Public Good Needs...

Increase the Scope for Pareto-Improving Reform

Politics: Fixed Cost to Lobbying

3 Stage political game:

- Each citizen *i* decides whether to lobby.
 Lobbying incurs a fixed cost φ.
- The value of g is drawn from a distribution Γ(g).
 Lobbyists choose policy {τ, f} to maximize joint utility.
- Solution Sconomy operates under policy $\{\tau, f\}$; payoffs are realized.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Subgame equilibrium of Stage 2

Ethan Ilzetzki A Positive Theory of Tax Reform

Benefit of Lobbying in Stage 2

Ethan Ilzetzki A Positive Theory of Tax Reform

- 4 回 > - 4 回 > - 4 回 >

Expected Cost and Benefit of Lobbying

Equilibrium lobby size

< 67 >

э

3

- Tax reform triggered by large revenue needs.
- Tax reform involves broadening the base and (typically) lowering rates.
- Large reforms feasible. Marginal reforms politically difficult.
- Private gains from tax breaks higher when tax base is narrow
 ⇒ Multiple equilibria.

イロト 不得 トイヨト イヨト 二日

Data

- Data on corporate tax base changes from Kawano and Slemrod (2012)
 - 30 OECD Countries
 - 1980-2004
- Define *Broaden*= 1 as any broadening of the tax base for domestic corporations
 - Robust to international tax reforms
- Right hand side variables
 - Tax revenues / GDP (or G/GDP or Debt/GDP)
 - Current statutory corporate tax rate
 - Change in statutory rate

イロン 不同 とくほう イロン

Results

Table: Regression Results

Dependent Variable = Reform					
1	2	3	4	5	6
.009** (.004)	.010** (.004)	.009** (.004)	.032** (.014)	.008** (.003)	.007* (.004)
	.009*** (.002)	.007*** (.002)	.026*** (.009)	.008*** (.003)	.007* (.004)
	017*** (.006)	018*** (.006)	060*** (.022)	020*** (.007)	014** (.006)
NO	NO	YES	YES	YES	YES
NO	NO	NO	NO	YES	YES
0.01	0.05	0.15	0.11	0.20	0.19
709	621	621	566	621	653
(ロ)(四)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)					
	1 .009** (.004) NO NO NO 0.01 709	Dep 1 2 .009** .010** (.004) .009*** (.002) 017*** .006) NO NO NO NO NO 0.01 0.05 709 621	Dependent Val 1 2 3 .009** .010** .009** (.004) (.004) (.004) .009*** .007*** (.002) (.002) 017*** 018*** (.006) VES NO NO NO NO 0.01 0.05 709 621	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dependent Variable = Reform 1 2 3 4 5 .009** .010** .009** .032** .008** (.004) (.004) (.014) (.003) .009*** .007*** .026*** .008*** (.002) (.002) (.009) (.003) 017*** 018*** .060*** 020*** (.006) .016 .022 '.007 NO NO YES YES NO NO NO YES 0.01 0.05 0.15 0.11 0.20 709 621 621 566 621

Ethan Ilzetzki

A Positive Theory of Tax Reform

- Tractable model for political determination of tax base+rates.
- Provides predictions for when and how these policies might be reformed.
- Consistent with tax reform experiences in OECD countries over past few decades.

< ロ > < 同 > < 回 > < 回 > < □ > <

-

Tax Aversion

• If (but not only if)

$$(1-\hat{\tau})^{\varepsilon-1} > (\mu-1) (\varepsilon - \eta - 2) \dots$$

...all citizens prefer lower statutory and effective tax rates.

- Assumption 1: Citizens are tax averse
- E.g. (parameterization used in figures)
 - $\eta = 0.5$ • $\varepsilon = 2$ (Broda and Weinstein, 2006).

$$1 - \hat{\tau} > -0.5 \, (\mu - 1)$$

Back

< ロ > < 同 > < 回 > < 回 > < □ > <